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Abstracl. It is proven that Smoluchowski’s coagulation equation with a kernel, K,,, which 
satisfies K j , S a ( i + j )  for some constant U has a unique solution which is analytical for 
all I a 0. 

1. Introduction 

The general form of Smoluchowski’s coagulation equation is 

k = 1 , 2 , .  . . . One of the intriguing properties of this equation is that the solution is 
not necessarily analytical for all f 2 0. In fact, with the kernel K,,; = i j ,  it is known from 
the exact solution that a singularity occurs at f = 1 [l-41. Also, even though mass 
conservation is apparently built into equation ( l ) ,  the solutions do not necessarily 
have conservation of mass as one can see from the ahove-mentioned exact solution. 
On the other hand, for K , ;  = 1 and K,.; = i +j one finds solutions which do have 
conservation of mass and no singularities [5,6]. 

White [7] has proved that if K[,,=Z(i+j) for all i and j and all the moments are 
hounded at f = 0 then (1)  will have at least one solution valid for all f 2 0 and that 
any solution to (1) will have bounded moments on all bounded time intervals for f > 0. 
This implies conservation of mass for this class of kernel. In the present article this 
class of kernel will he studied further and it will be proven that it has a unique solution 
whcih is analytical along the positive t-axis and that all the moments are analytical 
too, thus excluding any kind of singular behaviour. 

The proof is carried through using the initial condition at f = 0: 

c, = 1 Ck = 0 for k 3 2. (2) 

However, the precise form of the initial distribution is not important. The only condition 
used is that the moments of the initial distribution are bounded appropriately. 

The important assumption is that we can find a constant U, such that K , ,  sa( i + j )  
for all i and j. This condition can always be transformed to 

K , ; s  ( i + j ) / 2  i >  1 j a l  (3) 

by a scaling of time. 
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2. A bound on the moments 

First we notice that the form ofthe kinetic equations (1) implies that if all concentrations 
are non-negative at f = 0 then the concentrations stay non-negative at all later times 
( I  0)  [2,81. 

Next, provided a solution of equation (1) exists at time 1, we define moments pk( 1 )  

( k = O , 1 , 2 ,  . . .  ) by 

White [7] gives in connection with the proof of his lemma 4 bounds for the moments 
mx( 1 )  ( k  = 1,2,3, . . .). In our notation his bounds are given by: 

provided (6) holds for 1 = 0. Clearly, for k = 1 and k = 2 inequality ( 6 )  is identical with 
the bounds given by ( s a )  and ( 5 6 ) ,  respectively, if p, (0)=p2(O)  = I .  With the initial 
GUIIUIIIULI g1""L oy I', a,, 'I1"IIIC111S arc I ,U, 1 =U, WIIIGLI 15 GcLrarLrly C"II>I>LC,II W l l l l  
---A:.:-- -: L . . , m \  ^ I ,  *_ ~ - -  1 r._ . - n  ... L:-L:- --A-:.... ^ ^ _ ^  :^& :.L 

Assuming the inequality (6) to hold fork  = 1,2 , .  . . , n - 1, equation ( 5 c )  yields for k = n 

The sum can be evaluated (see (A.4) in the appendix) and we find 

1) m . ( t ) s e  " , / 2  2 I - n [-(el 1 "/>-I),- 

n - 2  

( 2 ( n - l ) ) !  ( 2 ( n - l ) ) !  ( 2 n - 2 ) !  
4 2  ( n - 2 ) !  - n  ( n  - l ) !  )+  ( n - l ) ! l  

From this the inequality (6) is easily obtained for k = n. The inequality (6) has thus 
been proven by induction and we have: 

Lemma 1 .  If the kernel satisfies (3) and the initial concentrations are non-negative 
and the moments satisfy (7) at r = 0 then fork a 1 a solution of (1) will necessarily satisfy 
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The fact that the moments are bounded has several important consequences. First one 
concludes from (3) that 

m 

E cjK;.j 
j = ,  

is bounded for all i and t 3 O  and that c , ( f )  consequently is a continuous and 
differentiable function for all i and 1 3  0. Also, from (8) 

valid for all k 3 1. This bound with k 3  j + 2  implies that the convergence of the partial 
sums for pj(f) is uniform for 0 s  f 5 1,. The uniform convergence together with the 
continuity of the partial sums imply the continuity of p j ( f ) .  The bound (9) can also 
be used to prove the uniform convergence of the sums defining dpj( f)/dt, which implies 
that f i j ( t )  is a differentiable function off. 

3. Bounds on the derivatives 

The purpose of this section is to establish bounds similar to (8) and (9) for the 
derivatives of the concentrations. Throughout the section we shall work at some definite 
time f (a0). We shall assume the concentrations to be given at this time and that the 
moments satisfy 

fios 1 (10) 

a ( i ,  0) = c , ( t )  (11) 

pLlr s 2 8  *(2(  k - 1)) ! / (  k - I )  ! f o r k 2 1  

where is some constant (which we in view of (8) may take to be e ' / 2 ) .  We write 

and define formally for n > 0 

Our aim is of course to identify a ( i ,  n )  with the nth derivative of e, for all n and not 
just for n = I  where ( 1 2 )  is identical to (1). In order to do  this we also introduce 
moments q ( n ,  m ) :  

do, m )  = wm 

The following lemma will now be established by induction on n, and thus the proof 
simultaneously justifies definition ( 1 2 )  by induction. 

Lemma 2. If at some time t the moments satisfy the inequalities (IO) then the numbers 
~ ( n ,  m )  defined by equations (11)-(13) satisfy 

~ ( n ,  m ) < 2  3"8"+"'(2n+Zm - 2 ) ! / ( n  + m - l ) !  (14) 

for n 3 0 and m a 0, except for (n, m )  = (0,O). 
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Proof: For n =0, m>O the inequality (14) is identical to ( I O ) .  If (14) has been 
established for n =0, 1, . . . , n'- 1 then the bound (3) on K,,, implies the absolute 
convergence of all the sums 

m 

Kt , ja( j ,  n - 1 - I )  
j =  I 

involved in the definition (12) of a( i ,  n') ( i =  1 , 2 , .  . .). Furthermore, the absolute 
convergence of all the sums involved in the computation of v ( n ' , m ' )  when (12) is 
substituted into (13) is also established by the boundedness of ~ ( n ,  m) for n < n' and 
m G m'+  1. It is thus clear how the inductive proof of (14) simultaneously justifies 
definitions (12) and (13). 

If (12) is substituted into (13)  and the numerical signs are moved inside the sums 
and (3)  is used we get for n 3 1 

I1 m 

+ I O W ,  0 Z (k+j) lo( j ,  n-1-111 
j =  I 

If we rearrange the sums (which is legal because of the absolute convergence) we get 

In the last line we use j m  < ( k + j ) "  to obtain (for P I S  1) 

I n  the appendix it is shown that i f  one defines coefficients v ( n ,  m )  for n SO, m 2 0  by 

(16) 
u(O.0 )  = 1 

v ( n ,  m )  = 2 ( 2 n + 2 m  - 2 ) ! / ( n + m - l ) !  ( ( n ,  m) # (0,O)) 

then they satisfy the recurrence relation 
I n - ,  

4 I = O  
v ( n , m ) = -  ') y!:  ( m t l )  v( l ,  i ) v ( n  - 1 - 1 ,  m +  1 - i )  (17) 

for n 5 1 and (n. m )  # (1,O); for (n ,  m )  = (1,O) the right-hand side is 1 while the left 
side is 2. Using (17) it is easily seen by induction on n that (15) implies (14) thus 

0 

Combining lemma 1 and lemma 2 it is seen that the right-hand side of (12) converges 
uniformly on bounded intervals O s  I S  to and that (11) and (12) thus define a( i ,  n )  as 
continous functions of 1. We are therefore justified in identifying a(;, n )  with the nth 
derivative of ci and conclude that c , ( I )  has continuous time-derivatives to all orders 
and (in view of the bound (14)) that they are bounded by 

concluding the proof of lemma 2. 

for O S  1s to and all k 3 I .  
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4. Analyticity 

It is easily seen from (18) that we can define cj(t) by its Taylor expansion as an 
analytical function of 1. To be precise we first define regions of the complex I-plane: 

Definition 1. 

A,(r): \ t - r \<e- ' /6  (19) 

A d r ) :  O <  Re(tl<r,  iIm(l}l<exp[-Re{l}]/6. (20)  

~ ( n ,  m ) / n ! ~ [ 6 e ' ] " ( n + m - 1 ) " + 3 ' 2 5 ,  (21) 

Using Stirling's formula for large n in (14) with p =e'/2 we find 

where is independent of n. If at some time 1 = lo the concentrations are given with 
moments which satisfy (8), and we define coefficients a(i, n )  by equations ( 1 1 )  and 
(12) and then define functions c ; ( t )  in &(to)  by 

m 

c<( t )=  1 a(i, n)(l-to)"/n! (22) 
n = o  

then ~ ~ ( 1 )  satisfies (1) in A,(t,J, because of the absolute convergence of the involved 
sums implied by (21), and not only the concentrations, but also all the moments are 
analytic in A,(to). 

With 1, = 0 equation (22) defines an analytic solution of (1) for a given set of initial 
concentrations which satisfy (7) (for example the set given by (2)) in A,(.O). Since the 
coefficients a ( i ,n )  are uniquely given by (11) and (12) and an analytic function is 
uniquely given by its Taylor expansion there cannot be another analytic solution with 
the same initial concentrations. If we now choose l1 inside A,(O) and use the values 
of ~ ~ ( 1 , )  given by the expansion around f = O  in (11) then (12) and (22) will define a 
solution of (1) in A , ( t , )  which must be an analytic extension of the solution in A,(O). 
By repeated application ofthis procedure the solution can thus be analytically continued 
to A,(m). Since A,(O) A,(m) is a simply connected region this continuation is unique. 

The only remaining problem is then the possible existence of another solution 
which is not analytic along the whole positive t-axis. Normally, this type of uniqueness 
problem is solved by using a Lipschitz condition. But the right-hand side of (1) does 
not satisfy a Lipschitz condition unless we can find a constant KO such that Kj,j s KO 
for all i and j (see Melzak [9] for a proof in this case). Also, the uniqueness of the 
derivatives to all orders is not enough to ensure the uniqueness of the continuation. 
However, by (18) we also have uniform boundedness of the derivatives and that is 
sufficient. 

To be specific, suppose that we had a second solution, ? ; ( 1 ) ,  to (1) which agreed 
with the analytic solution until the point 1 = to (possibly 1,=0). Since the derivatives 
at tu are uniquely given by (11) and (12) then we can apply Taylor's theorem to show 
that for l ~ < l ' < l , < t n + e x p ( - l , ) / 6  

(2n)! 
Ic,(t') - Q I ' ) ~  s 2(3/2)"- exp[(n + l)il]li '- i0l" 

n!n! 

where we have used (18) with k = l  to bound the nth derivatives of ~ ~ ( 1 )  and ? j ( t ) .  
With 1,  as specified above, the right-hand side will approach zero as n goes to infinity. 
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We have thus extended the uniqueness beyond to .  The result is summarized in the 
following theorem: 

Theorem 3. If the kernel satisfies ( 3 )  and the initial concentrations have moments 
which satisfy (7) then ( I )  has a unique, analytic solution in A,(O) A,(m). Also, all the 
moments are analytic functions in this region. 

5. Truncated models 

For a given model (defined by the kernel K, ; ,  i = 1,2 , .  . . , j =  I ,  2,. . .) we define a 
sequence of truncated models, K"' ( N  = 1 ,2 , .  . .): 

This truncation was first suggested by Lushnikov and Piskunov [IO]; it appears to be 
more natural to work with than the very similar truncation used by McLeod [8] and 
Leyvraz and Tschudi [ 2 ] .  One advantage of the present truncation is that if the original 
kernel factorizes (K , , ,  = s,s,) then the truncation conserves this property. Another 
advantage is that it can be used to study the formation of a gel by considering the 
molecules which contains more than N monomer units as the gel fraction. 

Clearly, the kernel K'" satisfies ( 3 )  if the original kernal does, and all the results 
of the preceding sections will therefore hold for the truncated models. We shall in this 
section only work with the initial condition (2 )  in order to avoid unnecessary complica- 
tions. The solution of ( 1 )  with the kernel given by (23) and the initial condition ( 2 )  is 
denoted cL"(t). With this initial condition it is easy to see that the solutions to the 
truncated models converge to the solution of the original model in A,(O) as N - t m .  
It follows from the fact that the Taylor expansion for ckN'( t )  at f = O  agrees with the 
Taylor expansion of cx( 1 )  for the first N terms. To be precise, if O< p < 116, choose 
M such that 

Then by lemma 2 if N > M 
m 

2 Ic i ( t ) -c i"( t ) l<  E for j r lSp  (25) 
; = I  

which proves that convergence in the 1'-norm is uniform in closed disks around the 
origin of the complex t-plane: 0 s  f 6 p ( p  < 116). 

In order to extend the uniform convergence to cover more of the positive f-axis 
we shall need to include uniform convergence of the derivatives. If we sharpen (24) to 

( 2 n  - 2 ) !  
( n  - m ) ! ( n  - I ) !  

< € 1 2  2 f (3/2)"p"-"  
n = M  

then the convergence criterium (25) can be extended to the first m derivatives for 
N > M. We now formulate what we want to prove in a lemma: 

Lemma 4. Let to> 0, m 3 0  and E > 0 be given and choose p <exp(-f,)/6. Then we 
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can determine MO such that if N >  MO and 0 < j <  m :  

Proof: The proof is doen by induction on lo.  We assume that the lemma has already 
be proven with 1, in place off,, where 

0 < f, < 1, and 6( t0-  fJ e x p ( f J <  1 (28) 

i.e. to is included in one of the disks around f l ,  We choose M such that 

m (Zn-Z)!  
2 1 (3/2)" exp[nfJp"-" < E / 4  

" S M  ( n  - m ) !  ( n  - 1) ! 

and then Ma> M such that for r =  f, and j = O ,  1, 2, .  , . , M -1 and N >  MO we have 
(this is possible because of the assumptions on tl) 

We have for If - lol < p 

If we interchange the order of the two summations we notice that in the sum over k 
the terms with k < M are hounded by (30) while the terms with k >  M are bounded 
by (29). Also, I f  - t0l is bounded by p and we get 

M - l  m 

h =; h=M 
< 1 ( p * " / ( k - j ) ! ) E  eCP/2+ 1 ( p k - J / ( k - j ) ! )  

x 4(3/2)' exp( kfo)(2k - 2)!/( k - 1) ! 

S ~ / 2 + 2 ~ / 4 = ~ .  

This concludes the extension of the lemma from f, to lo.  Since the lemma has been 
established for r, = 0 we have proved the lemma for all finite, non-negative values of to.  

For the truncation introduced by McLeod [8] the convergence of the solutions of 
truncated models to the solution of the original model follows from the uniqueness 
of the solution proved in the preceding section combined with theorem 1 of Leyvraz 
and Tschudi [Z]. 

6. Conclusion 

The results obtained in this article are by no means surprising. The uniqueness of the 
solution and the convergence of the solutions of the truncated models might very well 
be true quite generally. 
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McLeod [XI proved similar results for I f l<uSe- l  for a kernel which satisfies 
K,,,< and initial conditions equal to ( 2 ) .  Melzak [91 also proved similar results valid 
for all positive times if the kernel is bounded by a constant (K , , ,  c KO). Bak and 
Heilmann [ 111 recently proved the convergence of the solution of the truncated model 
(23) to the solution of the full model for the kernel K,,, =g. Kokholm [3] proved 
uniqueness of the known solution for the same model. It should be noticed thar the 
two other kernels for which simple explicit solutions have been given (K,,,  = I and 
K,,, = i + j )  are covered by the present article. 

Appendix 

The purpose of the appendix is to derive two relations among binomial coefficients 
which are used in the article. We start from the Taylor expansions 

Multiplication and rearranging of the double sum yields - (Zk)!  x - '  (Zj)! ( 2 k  - 2j - 2) !  
1 =  - -xk-2 1 X I  1 , 

k = o  k ! k !  k - 1  J = ~ ] ! ( j + l ) !  ( k - j - l ) ! ( k - j - I ) !  

or 
* - I  ( 2 k - Z i - Z ) ! ( 2 i ) !  1 (Zk)! - j = o [ k - i - l ) ! ( k - i ) ! i ! i !  1 2 k!k! 

We need this in a slightly different form 

*-' ( 2 k - 2 i - 2 ) ! ( 2 i ) !  (2k - 2)! 
;=, ( k  - i - l ) ! ( k  - i ) !  i ! ; !  ( k - 2 ) !  k !  2 = 2  

( A . 3 )  

( A . 4 )  

The second relation we want to derive is equation (17). From definition (16)  it 
ioiiows inat 

Squaring the left-hand side of (A.5) we get 
~ i ~ - ( i - ~ x - ~ ~ ~ ' ~ z ~ - ~ - ~ ~ - ~ y ,  

Squaring the right-hand side of ( A S )  and rearranging the sums yields 

Equating equal powers of x and y in the two expressions we get for j +  k >  1 

. v 
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If we take j = n - 1 and k = m + 1 in (A.6) and use U( n - 1, m + 1)  = U( n, m ) ,  equation 
(17) obtains for rial, n + m > l .  
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